
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015 5017

PCANet: A Simple Deep Learning Baseline for
Image Classification?

Tsung-Han Chan, Member, IEEE, Kui Jia, Shenghua Gao, Jiwen Lu, Senior Member, IEEE,
Zinan Zeng, and Yi Ma, Fellow, IEEE

Abstract— In this paper, we propose a very simple deep
learning network for image classification that is based on very
basic data processing components: 1) cascaded principal com-
ponent analysis (PCA); 2) binary hashing; and 3) blockwise
histograms. In the proposed architecture, the PCA is employed to
learn multistage filter banks. This is followed by simple binary
hashing and block histograms for indexing and pooling. This
architecture is thus called the PCA network (PCANet) and
can be extremely easily and efficiently designed and learned.
For comparison and to provide a better understanding, we
also introduce and study two simple variations of PCANet:
1) RandNet and 2) LDANet. They share the same topology as
PCANet, but their cascaded filters are either randomly selected
or learned from linear discriminant analysis. We have extensively
tested these basic networks on many benchmark visual data sets
for different tasks, including Labeled Faces in the Wild (LFW)
for face verification; the MultiPIE, Extended Yale B, AR, Facial
Recognition Technology (FERET) data sets for face recognition;
and MNIST for hand-written digit recognition. Surprisingly, for
all tasks, such a seemingly naive PCANet model is on par with the
state-of-the-art features either prefixed, highly hand-crafted, or
carefully learned [by deep neural networks (DNNs)]. Even more
surprisingly, the model sets new records for many classification
tasks on the Extended Yale B, AR, and FERET data sets and
on MNIST variations. Additional experiments on other public
data sets also demonstrate the potential of PCANet to serve as a
simple but highly competitive baseline for texture classification
and object recognition.

Index Terms— Convolution neural network, deep learning,
PCA network, random network, LDA network, face recognition,
handwritten digit recognition, object classification.

Manuscript received August 27, 2014; revised January 17, 2015 and
June 12, 2015; accepted August 28, 2015. Date of publication September 1,
2015; date of current version September 23, 2015. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Jean-Philippe Thiran.

T.-H. Chan is with MediaTek Inc., Hsinchu 30078, Taiwan (e-mail:
thchan@ieee.org).

K. Jia is with Department of Computer and Information Science, Faculty of
Science and Technology, University of Macau, Macau SAR, China (e-mail:
kuijia@umac.mo).

S. Gao is with the School of Information Science and Tech-
nology, ShanghaiTech University, Shanghai 200031, China (e-mail:
gaoshh@shanghaitech.edu.cn).

J. Lu is with the Department of Automation, Tsinghua University,
Beijing 100084, China (e-mail: elujiwen@gmail.com).

Z. Zeng is with the Advanced Digital Sciences Center, Singapore 138632
(e-mail: zeng.zinan@gmail.com).

Y. Ma is with the School of Information Science and Technology,
ShanghaiTech University, Shanghai 200031, China, and also with
the Department of Electrical and Computer Engineering, University
of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
mayi@shanghaitech.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2015.2475625

I. INTRODUCTION

IMAGE classification based on visual content is a very
challenging task, largely because there is usually a large

amount of intra-class variability, arising from different lighting
conditions, misalignment, non-rigid deformations, occlusion
and corruptions. Numerous efforts have been made to counter
the intra-class variability by manually designing low-level
features for classification tasks. Representative examples are
Gabor features and local binary patterns (LBP) for texture
and face classification and SIFT and HOG features for object
recognition. Although the low-level features can be hand
crafted with great success for certain data and tasks, designing
effective features for new data and tasks usually requires new
domain knowledge because most hand-crafted features cannot
simply be adapted to new conditions [1], [2].

Learning features from data of interest is considered
as a plausible method of remedying the limitations of
hand-crafted features. An example of such methods is
learning through deep neural networks (DNNs), which has
recently garnered significant attention [1]. The idea of deep
learning is to discover multiple levels of representation
with the hope that higher level features can represent more
abstract semantics of the data. Such abstract representations
learned from a deep network are expected to provide greater
robustness to intra-class variability. One key ingredient to
the success of deep learning in image classification is the
use of convolutional architectures [3]–[10]. A convolutional
deep neural network (ConvNet) architecture [3]–[5], [8], [9]
consists of multiple trainable stages stacked on top of each
other followed by a supervised classifier. Each stage generally
consists of “three layers” – a convolutional filter bank layer,
a nonlinear processing layer, and a feature pooling layer.
To learn a filter bank in each stage of ConvNet, a variety of
techniques, such as restricted Boltzmann machines (RBM) [7]
and regularized auto-encoders and their variations, has
been proposed; see [2] for a review and references therein.
In general, such a network is typically learned using a
stochastic gradient descent (SGD) method. However, learning
a network that is useful for classification critically depends
on expertise in parameter tuning and various ad hoc tricks.

Although many variations of deep convolutional networks
have been proposed for different vision tasks and their success
is usually empirically justified, arguably the first instance that
has led to a clear mathematical justification is the wavelet
scattering networks (ScatNet) [6], [10]. The only difference
in that case is that the convolutional filters in ScatNet
are prefixed – they are simply wavelet operators; hence,

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

5018 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

Fig. 1. Illustration of how the proposed PCANet extracts features from an
image through the three simplest processing components: PCA filters, binary
hashing, and histograms.

no learning is required. Somewhat surprisingly, such a pre-
fixed filter bank, once utilized in the similar multistage archi-
tectures of ConvNet or DNNs, has demonstrated superior
performance over ConvNet and DNNs in several challenging
vision tasks such as hand-written digits and texture recog-
nition [6], [10]. However, as we will observe in this paper,
such a prefixed architecture does not generalize very well to
tasks such as face recognition, where the intra-class variability
includes significant illumination changes and corruption.

A. Motivations

An initial motivation of our study is the desire to resolve
certain apparent discrepancies between ConvNet and ScatNet.
We want to achieve two simple goals: First, we want to design
a simple deep learning network that should be very easy,
even trivial, to train and to adapt to different data and tasks.
Second, such a basic network could serve as a good baseline
for people to empirically justify the use of more advanced
processing components or more sophisticated architectures for
their deep learning networks.

The solution comes as no surprise: We use the most basic
and easy operations to emulate the processing layers in a
typical (convolutional) neural network mentioned above: The
data-adapting convolution filter bank in each stage is chosen
to be the most basic PCA filters; the nonlinear layer is set
to be the simplest binary quantization (hashing); and for the
feature pooling layer, we simply use the block-wise histograms
of the binary codes, which are considered as the final output
features of the network. For ease of reference, we call this
data-processing network a PCA Network (PCANet). As an
example, Figure 1 illustrates how a two-stage PCANet extracts
features from an input image.

At least one characteristic of the PCANet model seems to
challenge common wisdom regarding building a deep learning
network such as ConvNet [4], [5], [8] and ScatNet [6], [10]:
no nonlinear operations in the early stages of the PCANet until
the very last output layer, where binary hashing and histograms

are utilized, to compute the output features. Nevertheless, as
we will see through extensive experiments, such a drastic
simplification does not appear to undermine the performance
of the network on various typical datasets.

A network closely related to the PCANet could be two-stage
oriented PCA (OPCA), which was first proposed for audio
processing [11]. Noticeable differences from the PCANet lie in
that OPCA does not couple with hashing and local histograms
in the output layer. With the covariances of noises as input,
OPCA gains additional robustness to noises and distortions.
The baseline PCANet can also incorporate the merits
of OPCA, thereby likely offering greater robustness to intra-
class variability. To this end, we have also explored a super-
vised extension of PCANet, where we replace the PCA filters
with filters that are learned from linear discriminant
analysis (LDA), called LDANet. As we will see through exten-
sive experiments, the additional discriminative information
does not appear to improve the performance of the network;
see Sections II-C, III, and IV. Another, somewhat extreme
variation of the PCANet is to replace the PCA filters with
completely random filters (say, the filter entries are i.i.d.
Gaussian variables), which is called RandNet. In this work,
we conducted extensive experiments and fair comparisons of
these types of networks with other existing networks such
as ConvNet and ScatNet. We hope our experiments and
observations will help people gain a better understanding of
these networks.

B. Contributions

Although our initial intention of studying the simple
PCANet architecture is to obtain a simple baseline for com-
paring and justifying other, more advanced deep learning com-
ponents or architectures, our findings lead to various pleasant
but thought-provoking surprises: The very basic PCANet, in
a fair experimental comparison, is already quite on par with,
and often better than, state-of-the-art features (prefixed, hand
crafted, or learned from DNNs) for almost all image classifica-
tion tasks, including face images, hand-written digits, texture
images, and object images. More specifically, for face recog-
nition with one gallery image per person, the model achieves
a 99.58% accuracy on the Extended Yale B dataset and a
greater than 95% accuracy across disguise/illumination subsets
in the AR dataset. On the FERET dataset, the model obtains
a state-of-the-art average accuracy of 97.25% and achieves
its best accuracy of 95.84 and 94.02% on the Dup-1 and
Dup-2 subsets, respectively.1 On the LFW dataset, the model
achieves a competitive 86.28% face verification accuracy
under the “unsupervised settings”. On the MNIST datasets,
the model achieves state-of-the-art results for subtasks such
as basic, background random, and background image; see
Sections III and IV for more details. The overwhelming empir-
ical evidence demonstrates the effectiveness of the proposed
PCANet in learning robust invariant features for various image
classification tasks.2

1The results were obtained by following the FERET standard training CD
and could be marginally better when the PCANet is trained on the MultiPIE
database.

2We have uploaded the Matlab source codes of the PCANet to
http://mx.nthu.edu.tw/~tsunghan/.

CHAN et al.: PCANet: A SIMPLE DEEP LEARNING BASELINE FOR IMAGE CLASSIFICATION 5019

Fig. 2. A detailed block diagram of the proposed (two-stage) PCANet.

The method hardly contains any deep or new techniques,
and our study so far is entirely empirical.3 Nevertheless, a thor-
ough report on such a baseline system has tremendous value
to the deep learning and visual recognition community, therein
sending both sobering and encouraging messages: On the one
hand, for future study, the PCANet can serve as a simple
but surprisingly competitive baseline for empirically justifying
advanced designs of multistage features or networks. On the
other hand, the empirical success of the PCANet (and even
that of RandNet) reconfirms certain remarkable benefits of
cascaded feature learning and extraction architectures. More
importantly, because the PCANet consists of only a (cascaded)
linear map followed by binary hashing and block histograms,
it is amenable to mathematical analysis and justification of
its effectiveness. This could lead to fundamental theoretical
insights about general deep networks, which currently seem
to be an urgent need in deep learning.

II. CASCADED LINEAR NETWORKS

A. Structures of the PCA Network (PCANet)

Suppose that we are given N input training images {I i }N
i=1

of size m × n, and we assume that the patch size (or 2D filter
size) is k1 × k2 at all stages. The proposed PCANet model
is illustrated in Figure 2, and only the PCA filters need to
be learned from the input images {Ii }N

i=1. In what follows,
we more precisely describe each component of the block
diagram.

1) The First Stage (PCA): Around each pixel, we take a
k1 × k2 patch, and we collect all (overlapping) patches of the
i -th image, i.e., xi,1, xi,2, . . . , xi,m̃ñ ∈ R

k1k2 , where each xi, j

denotes the j -th vectorized patch in Ii , m̃ = m − �k1/2�,
ñ = n − �k2/2�, and �z� gives the smallest integer greater
than or equal to z. We then subtract the patch mean from each
patch and obtain X̄i = [x̄i,1, x̄i,2, . . . , x̄i,m̃ñ], where x̄i, j =
xi, j − 1T xi, j

k1k2
1 is a mean-removed patch. Here, 1 is an all-one

vector of proper dimension. By constructing the same matrix
for all input images and combining them, we obtain

X = [X̄1, X̄2, . . . , X̄N] ∈ R
k1k2×Nm̃ñ. (1)

Assuming that the number of filters in layer i is Li , PCA min-
imizes the reconstruction error within a family of orthonormal

3We would be surprised if something similar to PCANet or variations to
OPCA [11] have not been suggested or experimented with before in the vast
learning literature.

filters, i.e.,

min
V∈Rk1k2×L1

‖X − V V T X‖2
F , s.t. V T V = IL1, (2)

where IL1 is the identity matrix of size L1 × L1. The solution
is known as the L1 principal eigenvectors of X XT . The
PCA filters are therefore expressed as

W1
l

.= matk1,k2 (ql(X XT)) ∈ R
k1×k2 , l = 1, 2, . . . , L1, (3)

where matk1,k2(v) is a function that maps v ∈ R
k1k2 to a

matrix W ∈ R
k1×k2 and ql(X XT) denotes the l-th principal

eigenvector of X XT . The leading principal eigenvectors
capture the main variation of all of the mean-removed training
patches. Of course, similar to DNN and ScatNet, we can stack
multiple stages of PCA filters to extract higher level features.

2) The Second Stage (PCA): Almost repeating the same
process as in the first stage, let the l-th filter output of the first
stage be

Il
i

.= Ii ∗ W1
l , i = 1, 2, . . . , N, (4)

where ∗ denotes 2D convolution, and the boundary of Ii is
zero-padded before convolving with W1

l so as to make Il
i

have the same size as Ii . As in the first stage, we can collect
all of the overlapping patches of Il

i , subtract the patch mean
from each patch, and form Ȳ l

i = [ȳi,l,1, ȳi,l,2, . . . , ȳi,l,m̃ ñ] ∈
R

k1k2×m̃ñ , where ȳi,l, j is the j -th mean-removed patch in Il
i .

We further define Y l = [Ȳ l
1, Ȳ 1

2 , . . . , Ȳ l
N] ∈ R

k1k2×Nm̃ñ for the
matrix, collecting all mean-removed patches of the l-th filter
output and concatenate Y l for all of the filter outputs as

Y = [Y 1, Y 2, . . . , Y L1] ∈ R
k1k2×L1 Nm̃ñ . (5)

The PCA filters of the second stage are then obtained as

W2
�

.= matk1,k2 (q�(YY T)) ∈ R
k1×k2 , � = 1, 2, . . . , L2. (6)

For each input Il
i of the second stage, one will output L2

images of size m × n, and each convolves Il
i with W2

� for
� = 1, 2, . . . , L2:

Ol
i

.= {Il
i ∗ W2

� }L2
�=1. (7)

The number of output images at the second stage is L1 L2.
One can simply repeat the above process to build more (PCA)
stages if a deeper architecture is found to be beneficial.

5020 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

3) Output Stage (Hashing and Histograms): Each of the
L1 input images Il

i for the second stage has L2 real-valued
outputs {Il

i ∗W2
� }L2

�=1 from the second stage. We binarize these
outputs and obtain {H (Il

i ∗W2
�)}L2

�=1, where H (·) is a Heaviside
step (like) function, whose value is one for positive entries and
zero otherwise.

Around each pixel, we view the vector of L2 binary bits as
a decimal number. This converts the L2 outputs in Ol

i back
into a single integer-valued “image”:

T l
i

.=
L2∑

�=1

2�−1 H (Il
i ∗ W2

�), (8)

whose every pixel is an integer in the range
[
0, 2L2 − 1

]
. The

order and weights of the L2 outputs are irrelevant because
here we treat each integer as a distinct “word.”

Each of the L1 images T l
i , l = 1, . . . , L1 is partitioned into

B blocks. We compute the histogram (with 2L2 bins) of the
decimal values in each block and concatenate all B histograms
into one vector and denote this vector as Bhist(T l

i). After this
encoding process, the “feature” of the input image Ii is then
defined to be the set of block-wise histograms, i.e.,

fi
.= [Bhist(T 1

i), . . . , Bhist(T L1
i)]T ∈ R

(2L2)L1 B . (9)

The local blocks can be either overlapping or non-overlapping,
depending on the application. Our empirical experience sug-
gests that non-overlapping blocks are suitable for face images,
whereas overlapping blocks are appropriate for hand-written
digits, textures, and object images. Furthermore, the histogram
offers some degree of translation invariance in the extracted
features, as in hand-crafted features (e.g., scale-invariant fea-
ture transform (SIFT) [12] and histogram of oriented gradi-
ents (HOG) [13]), learned features (e.g., bag-of-word (BoW)
model [14]), and the average and maximum pooling process
in ConvNet [3]–[5], [8], [9].

The hyper-parameters of the PCANet include the filter
size k1, k2, the number of filters in each stage L1, L2, the
number of stages, and the block size for local histograms in
the output layer. PCA filter banks require that k1k2 ≥ L1, L2.
In our experiments in Section III and Section IV, excluding
object recognition, we always set L1 = L2 = 8, which is
inspired from the common setting of Gabor filters [15] with
8 orientations, although some fine-tuned L1, L2 could lead to
marginal performance improvements. The hyper-parameters,
such as the filter size k1, k2 and the block size for local
histograms, are determined through a grid search with either
cross-validation or a validation set. Moreover, we have empir-
ically observed that two-stage PCANet is in general sufficient
to achieve good performance and that a deeper architecture
does not necessarily lead to further improvements. In addition,
a larger block size for local histograms provides greater
translation invariance in the extracted feature fi .

4) Comparison With ConvNet and ScatNet: Clearly,
PCANet shares various similarities with ConvNet [5]. The
patch-mean removal in PCANet is reminiscent of local contrast
normalization in ConvNet.4 This operation moves all of the

4We have tested the PCANet without patch-mean removal, and a slightly
degraded performance is observed.

patches to be centered around the origin of the vector space so
that the learned PCA filters can better capture major variations
in the data. In addition, PCA can be viewed as the simplest
class of auto-encoders, which minimizes reconstruction error.

The PCANet contains no non-linearity processes between/in
stages, in contrast to the common wisdom regarding building
deep learning networks, e.g., the absolute rectification layer
in ConvNet [5] and the modulus layer in ScatNet [6], [10].
We have tested the PCANet with an absolute rectification layer
added immediately after the first stage, but we did not observe
any improvement in the final classification results. This could
be because the use of quantization plus a local histogram
(in the output layer) already introduces sufficient invariance
and robustness in the final feature.

The overall process prior to the output layer in the PCANet
is completely linear. One may wonder what would occur
if we merge the two stages into only one stage that has
an equivalently equal number of PCA filters and receptive
field size. Specifically, one may be interested in how the
single-stage PCANet with L1 L2 filters of size (2k1 − 1) ×
(2k2 − 1) could perform compared to the two-stage PCANet
described in Section II-A. We have experimented with such
settings on faces and hand-written digits and observed that the
two-stage PCANet outperforms this single-stage alternative in
most cases; see the last several rows of Tables III, X, and XI.
In comparison to the filters learned by the single-stage alter-
native, the resulting two-stage PCA filters essentially have a
low-rank factorization, possibly resulting in a lower chance
of over-fitting the dataset. Regarding why we need the deep
structure, from a computational perspective, the single-stage
alternative requires learning filters with L1 L2(2k1−1)(2k2−1)
variables, whereas the two-stage PCANet only learns
filters with in total (L1 + L2)k1k2 variables. Another benefit
of the two-stage PCANet is that the larger receptive field,
because it contains more holistic observations of the objects
in images, and its learning invariance can essentially cap-
ture more semantic information. Our comparative experiments
verify that hierarchical architectures with large receptive fields
and multiple stacked stages are more efficient in terms of
learning semantically related representations, which agrees
with what has been observed in [7].

B. Computational Complexity

The components for constructing the PCANet are extremely
basic and computationally efficient. To observe how low
the computational complexity of PCANet would be, let us
take the two-stage PCANet as an example. In each stage
of the PCANet, forming the patch-mean-removed matrix X
costs k1k2 + k1k2m̃ñ flops; the inner product X XT has
a complexity of 2(k1k2)

2m̃ñ flops; and the complexity of
eigen-decomposition is O((k1k2)

3). The PCA filter convolu-
tion requires Li k1k2mn flops for stage i . In the output layer,
the conversion of L2 binary bits to a decimal number costs
2L2m̃ñ, and the naive histogram operation is of complexity
O(mnB L2 log 2). By m̃ = m − �k1/2�, ñ = n − �k2/2� and
assuming mn � max(k1, k2, L1, L2, B), the overall complex-
ity of the PCANet is easily verified as

O(mnk1k2(L1 + L2) + mn(k1k2)
2).

CHAN et al.: PCANet: A SIMPLE DEEP LEARNING BASELINE FOR IMAGE CLASSIFICATION 5021

The above computational complexity applies to the training
and testing phase of the PCANet because the extra computa-
tional burden in the training phase from the testing phase is
the eigen-decomposition, whose complexity is ignorable when
mn � max(k1, k2, L1, L2, B).

In comparison to ConvNet, the SGD for filter learning
is also a simple gradient-based optimization solver, but the
overall training time remains much longer than that of the
PCANet. For example, training the PCANet on approximately
100,000 images of 80×60 pixels took only half an hour, but
CNN-2 took 6 hours, excluding the fine-tuning process; see
Section III-A4 for details.

C. Two Variations (RandNet and LDANet)

The PCANet is an extremely simple network, requiring only
minimal learning of the filters from the training data. One can
immediately think of two possible variations of the PCANet
along two opposing directions:

1) We could further eliminate the necessity of training data
and replace the PCA filters at each layer with random
filters of the same size. Specifically, the random filters,
i.e., the elements of W1

l and W2
l , are generated following

standard Gaussian distributions. We call such a network
a Random Network, or RandNet for short. It is natural to
wonder how much degradation such a randomly chosen
network would generate compared to the PCANet.

2) If the task of the learned network is classification, we can
further enhance the supervision of the learned filters
by incorporating the information of class labels in the
training data and learn the filters based on the idea of
multi-class linear discriminant analysis (LDA). We call
such a composed network LDA Network, or LDANet
for ease of reference. Again, we are interested in how
much the enhanced supervision would help improve the
performance of the network.

Specifically, we now describe in greater detail how to
construct the LDANet. Suppose that the N training images
are classified into C classes {Ii }i∈Sc , c = 1, 2, . . . , C , where
Sc is the set of indices of images in class c, and the mean-
removed patches associated with each image of distinct classes
X̄i ∈ R

k1k2×mn , i ∈ Sc (in the spirit of X̄i in (1)) are given.
We can first compute the class mean �c and the intra-class
variability �c for all of the patches as follows:

�c =
∑

i∈Sc

X̄i/|Sc|, (10)

�c =
∑

i∈Sc

(X̄i − �c)(X̄i − �c)
T /|Sc|. (11)

Each column of �c denotes the mean of the patches around
each pixel in the class c, and �c is the sum of all of the patch-
wise sample covariances in class c. Likewise, the inter-class
variability of the patches is defined as

� =
C∑

c=1

(�c − �)(�c − �)T /C, (12)

where � is the mean of the class means. The idea of LDA is
to maximize the ratio of the inter-class variability to the sum

of the intra-class variability within a family of orthonormal
filters, i.e.,

max
V∈Rk1k2×L1

Tr(V T �V)

Tr(V T (
∑C

c=1 �c)V)
, s.t. V T V = IL1, (13)

where Tr(·) is the trace operator. The solution is known as the
L1 principal eigenvectors of �̃ = (

∑C
c=1 �c)

†�, where the
superscript † denotes the pseudo-inverse. The pseudo-inverse
is used to address the case where

∑C
c=1 �c is not of full

rank, although there might be another method of address-
ing this with better numeric stability [16]. The LDA filters
are thus expressed as W1

l = matk1,k2(ql(�̃)) ∈ R
k1×k2 ,

l = 1, 2, . . . , L1. A deeper network can be built by repeating
the same process as above.

III. EXPERIMENTS: FACE RECOGNITION

AND FACE VERIFICATION

In this section, we first explore how the proposed PCANet
and the two simple variations (RandNet and LDANet) perform
in face recognition and face verification tasks. Additional
experiments on hand-written digit recognition, texture discrim-
ination, and object recognition will be reported in the next
section.

Face image databases and the classifiers employed in this
section are introduced below.

Databases: The MultiPIE dataset [17] contains
337 subjects with varying poses, expressions, and illumination
conditions. The Extended Yale B dataset [18] consists of
2,414 frontal-face images of 38 individuals, where the images
were captured under various laboratory-controlled lighting
conditions. The AR dataset [19] consists of over 4,000 frontal
images of 126 subjects. These images contain different
facial expressions, illumination conditions and disguises. The
FERET dataset [20] is a standard dataset used for facial
recognition system evaluation. This dataset contains images
of 1,196 different individuals, with up to 5 images of each
individual captured under different lighting conditions, with
non-neutral expressions and over a period of three years.
LFW [21] contains 13,233 face images of 5,749 different
individuals collected from the web with large variations in
pose, expression, illumination, clothing, hairstyles, etc.

Images of various selected subjects from the MultiPIE
dataset are used to learn the PCA filters in the PCANet. This
trained PCANet is then applied to extract features of new
subjects from the MultiPIE, Extended Yale B, AR, and FERET
datasets for face recognition. Furthermore, the LFW dataset
is used to conduct experiments concerning face verification.
Table I lists these databases and the experimental settings.

Classifiers: A nearest neighbor (NN) classifier with a
chi-squared or cosine distance measure is employed
throughout this section.5 Linear SVM and softmax classifiers
are not selected due to the insufficient number of gallery train-
ing faces because we are interested in face recognition with
one gallery image per person, that is, each subject contains

5It is known that the chi-squared distance is an effective measure for
comparing histogram features, although the cosine distance may be a more
common choice.

5022 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

TABLE I

SUMMARY OF THE DATABASES AND EXPERIMENTAL SETTINGS USED IN SECTION III: THE MultiPIE, EXTENDED YALE B, AR, AND FERET

DATASETS ARE EXPLOITED FOR FACE RECOGNITION, AND THE LFW DATASET IS USED FOR FACE VERIFICATION. ADDITIONAL

INFORMATION ABOUT THE TRAINING SETS AND TEST SETS IS PROVIDED IN THEIR RESPECTIVE SUBSECTIONS

only one image in the gallery training set. A comparison
of the NN, linear SVM and softmax classifiers will also be
presented in Section III-A4.

A. Face Recog.: Training and Testing on MultiPIE Dataset

We first depict how a generic face training set is assembled
from the MultiPIE dataset [17]. The assembled dataset is used
to train the PCANet or to learn the PCA filters. From the
total of 337 subjects in the MultiPIE dataset, we selected the
images of the 129 subjects that participated in all four sessions.
Images of a subject under all illumination conditions and all
expressions at pose −30° to +30° with step size 15°, a total
of 5 poses, were collected. We manually selected eye corners
as the ground truth for registration and down-sampled the
images to 80×60 pixels. The distance between the two outer
eye corners is normalized to be 50 pixels. All cropped images
are converted to gray scale and normalized to Euclidean unit
length. Briefly, this generic faces training set is composed
of approximately 100,000 images of 129 subjects under all
combinations of illuminations, expressions, and near-frontal
poses (within ±30°).

We use the generic faces training set to train the PCANet
and, together with data labels, to learn LDANet; then, we apply
the trained networks to extract features of the new subjects in
the Multi-PIE dataset. Because the 129 subjects who enrolled
in all four sessions are used for the PCANet training, all
images of the remaining 120 new subjects in Session 1 are
used for gallery training and testing. A frontal view of each
subject with neutral expression and frontal illumination is
used in the gallery, and the remainder are used for testing.
We classify all possible variations into 7 test sets: cross
illumination, cross expression, cross pose, cross expression-
plus-pose, cross illumination-plus-expression, cross
illumination-plus-pose, and cross illumination-plus-
expression-and-pose. The cross-pose test set is specifically
gathered over the poses −30°, −15°, +15°, and +30°.

In what follows, the cross illumination test set is used
to investigate the impact of the number of filters, different
block overlap ratios, and the number of generic faces training
samples for the proposed networks. We then compare the
proposed networks with state-of-the-art methods on all test
sets. Moreover, a performance comparison among the NN,
linear SVM and softmax classifiers is also conducted.

1) Impact of the Number of Filters: The impact of the
number of filters used in these networks on the cross-
illumination test set is studied here. The filter size of the

Fig. 3. Recognition accuracy of the PCANet on the MultiPIE cross-
illumination test set for varying number of filters in the first stage.
(a) PCANet-1; (b) PCANet-2 with L2 = 8.

Fig. 4. Original image and its artificially deformed images.

networks is k1 = k2 = 5, and their non-overlapping blocks are
of size 8×6. We vary the number of filters in the first stage
L1 from 2 to 12 for one-stage networks. When considering
two-stage networks, we set L2 = 8 and vary L1 from 4 to 24.
The results are shown in Figure 3. One can observe that
PCANet-1 achieves the best results for L1 ≥ 4 and that
PCANet-2 provides the best performance for all L1 being
tested. Moreover, the accuracy of the PCANet and LDANet
(for both one-stage and two-stage networks) increases for
larger L1, and RandNet also exhibits a similar performance
trend. Note that the performance of RandNet was averaged
over 10 independent runs.

2) Impact of the the Block Size: We next examine the impact
of the block size (for histogram computations) on the robust-
ness of the PCANet against image deformations. We use the
cross-illumination test set and introduce artificial deformation
to the testing image with translations, in-plane rotations and
scaling; see Figure 4. The parameters of the PCANet are
set to k1 = k2 = 5 and L1 = L2 = 8. Two block sizes,
8×6 and 12×9, are considered. Figure 5 shows the recognition
accuracy for each artificial deformation. PCANet-2 is found to
achieve a greater than 90 percent accuracy with translations up
to 4 pixels in all directions, with up to 8° in-plane rotations,
and with scale varying from 0.9 to 1.075. Moreover, the

CHAN et al.: PCANet: A SIMPLE DEEP LEARNING BASELINE FOR IMAGE CLASSIFICATION 5023

Fig. 5. Recognition rate of PCANet on MultiPIE cross-illumination test set for different PCANet block sizes and deformations in the test image.
Two block sizes [8 6] and [12 9] for histogram aggregation are tested. (a) Simultaneous translation in the x and y directions. (b) Translation in the x direction.
(c) Translation in the y direction. (d) In-plane rotation. (e) Scale variation.

TABLE II

FACE RECOGNITION RATES (%) OF THE PCANet ON THE MultiPIE

CROSS-ILLUMINATION TEST SET WITH RESPECT TO DIFFERENT

NUMBERS OF GENERIC FACES TRAINING IMAGES (S)

results suggest that PCANet-2 with a larger block size provides
greater robustness against various deformations, but a larger
block size may sacrifice performance in PCANet-1.

3) Impact of the Number of Generic Faces Training
Samples: We also report the recognition accuracy of the
PCANet for different numbers of generic faces training
images. Again, we use the cross-illumination test set.
We randomly select S images from the generic faces training
set to train the PCANet and vary S from 100 to 50, 000.
The parameters of the PCANet are set to k1 = k2 = 5,
L1 = L2 = 8, and a block size of 8×6. The results are tabu-
lated in Table II. The accuracy of the PCANet is surprisingly
somewhat less sensitive to the number of generic faces training
images. The performance of PCANet-1 gradually improves as
the number of generic faces training samples increases, and
PCANet-2 obtains perfect recognition even when there are
only 100 generic faces training samples.

4) Comparison With State of the Art: We compare the
RandNet, PCANet, and LDANet with Gabor6 [15], LBP7 [22],
and two-stage ScatNet (ScatNet-2) [6]. We set the parameters
of PCANet to the filter size k1 = k2 = 5, the number of

6Each face is convolved with a family of Gabor kernels with 5 scales and
8 orientations. Each filter response is down-sampled by a 3×3 uniform lattice
and normalized to zero mean and unit variance.

7Each face is divided into several blocks, each with a size that is the same
as in PCANet. The histogram of 59 uniform binary patterns is then computed,
and the patterns are generated by thresholding 8 neighboring pixels in a circle
of radius 2 using the central pixel value.

Fig. 6. The PCANet filters learned on the MultiPIE dataset. Top row: the
first stage. Bottom row: the second stage.

filters L1 = L2 = 8, and 8×6 block size, and the learned
PCANet filters are shown in Figure 6. The number of scales
and the number of orientations in ScatNet-2 are set to 3 and 8,
respectively. We use an NN classifier with the chi-squared
distance for RandNet, PCANet, LDANet and LBP and the
cosine distance for Gabor and ScatNet. We should emphasize
that the NN classifier with different distance measures is used
to secure the best performances for respective features.

We also provide a comparison with CNN. Because we could
not find any work that successfully applies CNN to the same
face recognition tasks, we used the Caffe framework [23]
to pre-train a two-stage CNN (CNN-2) on the generic faces
training set. The CNN-2 is a fully supervised network with
filter size 5×5, with 20 channels for the first stage and
50 channels for the second stage. Each convolution output
is followed by a rectified linear function relu(x) = max(x, 0)
and 2×2 max-pooling. The output layer is a softmax classifier.
After pre-training the CNN-2 on the generic faces training set,
the CNN-2 is also fine-tuned on the 120 gallery images for
500 epochs.

The performances of all methods are given in Table III.
Except on the cross-pose test set, the PCANet yields the
best precision. For all test sets, RandNet and LDANet are
inferior to the PCANet, and LDANet does not appear to
utilize discriminative information. One can also observe that
whenever there are illumination variations, the performance
of LBP significantly decreases. The PCANet overcomes this
drawback and offers a competitive performance compared to

5024 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

TABLE III

COMPARISON OF FACE RECOGNITION RATES (%) OF VARIOUS METHODS ON THE MultiPIE TEST SETS. THE FILTER SIZE k1 = k2 = 5

AND THE NUMBER OF FILTERS L1 = L2 = 8 ARE SET, AND THE NN CLASSIFIER IS USED IN RandNet, PCANet, AND LDANet

UNLESS OTHERWISE SPECIFIED. HERE, L ′
1 = L1 L2 , AND k′

i = 2ki − 1, i = 1, 2

LBP for cross-pose and cross-expression variations. As a final
note, ScatNet and CNN do not perform well.8 This is the
case for all face-related experiments below, and therefore,
ScatNet and CNN are not included for comparison in these
experiments. We also do not include RandNet and LDANet
in the following face-related experiments because they did not
show performance improvements over the PCANet.

We also investigated PCANet-1 with L1 L2 filters of size
k ′

1 × k ′
2, where k ′

i = 2ki − 1 = 9, i = 1, 2, as shown
in the third to last row of Table III. PCANet-1 with such a
parameter setting is used to mimic the reported PCANet-2 in
a single-stage network because both have the same number
of PCA filters and receptive field size. This may help us
understand if one could combine two-stage PCANet into
one stage because the process prior to the output layer is
entirely linear. The results show that PCANet-2 outperforms
the PCANet-1 alternative, which immediately validates the
advantages of deeper networks. This observation also holds
for all face-related experiments, and thus, the results of such
an experimental setting are not tabulated in these experiments.

The last two rows of Table III show the performances of
PCANet-2 followed by linear SVM and softmax classifiers.
The softmax classifier apparently overfits the 120 gallery face
images. Although the linear SVM classifier performs modestly
well, it is still not competitive with the NN classifier in most
cases.

Another merit worth mentioning in this subsection is the
training efficiency of the PCANet. Training PCANet-2 on the
generic faces training set (i.e., on approximately 100,000 face
images of 80×60 pixels) took only half an hour, but CNN-2
took 6 hours, excluding the fine-tuning process.

B. Face Recog.: Testing on Extended Yale B Dataset

The MultiPIE trained PCANet model (or to be more precise,
PCA filters) are applied to the Extended Yale B dataset [18].
The cropped 192×168 face images were normalized to
Euclidean unit length. For each subject, we selected frontal

8The performance of CNN could be further promoted if the model parame-
ters are more fine-tuned.

Fig. 7. Illustration of varying level of an occluded test face image.

TABLE IV

RECOGNITION RATES (%) ON EXTENDED YALE B DATASET

illumination as the gallery images, and the remainder were
used for testing. To challenge ourselves, in the test images,
we also simulated various levels of contiguous occlusion,
from 0 to 80 percent, by replacing a randomly located square
block of each test image with an unrelated image; see Figure 7
for an example. The size of the non-overlapping blocks in
the PCANet was set to 8×8. We compare with LBP [22]
and LBP of the test images being processed by illumination
normalization, P-LBP [24]. We use the NN classifier with the
chi-squared distance measure.

The experimental results are given in Table IV. One can
observe that the PCANet outperforms the P-LBP with dif-
ferent levels of occlusion. In addition, the PCANet is not
only illumination-insensitive but also robust against block
occlusion. Under such a single sample per person setting and
such difficult lighting conditions, the PCANet surprisingly
achieves an almost perfect recognition rate of 99.58% and still
sustains 86.49% accuracy when 60% of the pixels of every test
image are occluded! The “non-occluded facial part” seems
to provide essential information for discriminating between
different subjects because the cropped images are spatially

CHAN et al.: PCANet: A SIMPLE DEEP LEARNING BASELINE FOR IMAGE CLASSIFICATION 5025

TABLE V

RECOGNITION RATES (%) ON AR DATASET

dominated by the entire face and because no background is
retained; see Figure 7. This could be because each PCA filter
can be seen as a detector with a maximum response for patches
from a face. In other words, the contribution from occluded
patches was somehow ignored after PCA filtering and are not
passed onto the output layer of the PCANet, thereby yielding
striking robustness to occlusion.

C. Face Recog.: Testing on AR Dataset

We further evaluate the ability of the MultiPIE-learned
PCANet to address real, possibly malicious occlusions using
the AR dataset [19]. In the experiment, we chose a subset of
the data consisting of 50 male subjects and 50 female subjects.
The images are cropped with dimensions of 165×120,
converted to gray scale, and normalized to Euclidean unit
length. For each subject, we select the face with frontal illu-
mination and neural expression in the gallery training, and the
remainder are used for testing. The size of the non-overlapping
blocks in the PCANet is set to 8×6. We also compare with
LBP [22] and P-LBP [24]. We use the NN classifier with the
chi-squared distance measure.

The results are given in Table V. For the test set of
illumination variations, the recognition by PCANet is again
almost perfect, and for the cross-disguise-related test sets,
the accuracy is greater than 95%. The results are consistent
with those on the MultiPIE and Extended Yale B datasets:
PCANet is insensitive to illumination and robust to occlusions.
To the best of our knowledge, no single feature with a
simple classifier can achieve such performances, even if using
extended representation-based classification (ESRC) [25]!

D. Face Recog.: Testing on FERET Dataset

Finally, we apply the MultiPIE-learned PCANet to the
popular FERET dataset [20]. The dataset is partitioned into
disjoint sets: gallery and probe. The probe set is further
subdivided into four categories: Fb, with different expression
changes; Fc, with different lighting conditions; Dup-I, taken
within a period of three to four months; and Dup-II, taken
at least one and a half years apart. We use the gray scale
images cropped to an image size of 150×90 pixels. The
cropped images are also normalized to Euclidean unit length.
The size of the non-overlapping blocks in the PCANet is set
to 15×15. To perform a fair comparison with prior methods,
the dimensions of the PCANet features are reduced to 1000 via
a whitening PCA (WPCA),9 where the projection matrix is
learned from the features of gallery samples. The NN classifier

9The PCA projection directions are weighted by the inverse of their
corresponding square-root energies.

TABLE VI

RECOGNITION RATES (%) ON THE FERET DATASET

TABLE VII

COMPARISON OF VERIFICATION RATES (%) ON LFW USING

THE UNSUPERVISED SETTING

with cosine distance is used. Furthermore, in addition to the
PCANet trained on the MultiPIE database, we also train the
PCANet on the FERET generic training set, which consists
of 1,002 images of 429 people listed in the FERET standard
training CD.

The results of the PCANet and state-of-the-art methods are
listed in Table VI. Surprisingly, MultiPIE-learned PCANet-2
and FERET-learned PCANet-2 (with Trn. CD in parentheses)
achieve state-of-the-art accuracies of 97.25 and 97.26% on
average, respectively. Because the variations in the MultiPIE
dataset are much richer than in the standard FERET training
set, it is natural that the MultiPIE-learned PCANet slightly
outperforms the FERET-learned PCANet. More importantly,
PCANet-2 breaks the records in Dup-I and Dup-II.

Concluding remarks on face recognition: A promi-
nent conclusion drawn from the above experiments in
Sections III-A, III-B, III-C, and III-D is that training the
PCANet from a face dataset can be very effective for capturing
the abstract representation of new subjects and new datasets.
After the PCANet was trained, extracting a PCANet-2 feature
for one test face takes only 0.3 second in Matlab. We can
anticipate that the performance of the PCANet can be further
improved and moved toward practical use if the PCANet is
trained on a wide and deep dataset that collects sufficient
inter-class and intra-class variations.

E. Face Verification on LFW Dataset

In addition to the previous experiments with laboratory face
datasets, we also applied the PCANet to the LFW dataset [21]
for unconstrained face verification. We consider the
“unsupervised setting”, which is the best choice for

5026 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

TABLE VIII

SUMMARY OF THE DATABASES USED IN SECTION IV. MNIST AND ITS VARIATIONS ARE FOR HAND-WRITTEN DIGIT RECOGNITION, CUReT

IS FOR TEXTURE DISCRIMINATION, AND CIFAR10 IS FOR OBJECT RECOGNITION

evaluating the learned features because it does not depend
on metric learning and discriminative model learning. The
aligned version of the faces, namely, LFW-a, provided by
Wolf et al. [32] was exploited. The face images were cropped
to 150 × 80 pixels10 and are normalized to Euclidean unit
length. We follow the standard evaluation protocol, which
splits the View 2 dataset into 10 subsets, with each subset
containing 300 intra-class pairs and 300 inter-class pairs.
We perform 10-fold cross validation using the 10 subsets of
pairs in View 2. In the PCANet, the filter size, the number
of filters, and the (non-overlapping) block size are set to
k1 = k2 = 7, L1 = L2 = 8, and 15×13, respectively.
The performances are measured by averaging the 10-fold
cross validation. We project the PCANet features onto
400 and 3,200 dimensions using WPCA for PCANet-1 and
PCANet-2, respectively, and we use the NN classifier with
the cosine distance.

Table VII lists the results.11 Note that PCANet followed by
sqrt in parentheses represents the PCANet feature taking the
square-root operation. One can observe that the square-root
PCANet outperforms the PCANet, and such a performance
boost can also be noticed for other features used in this
dataset [33]. Moreover, the square-root PCANet-2 achieves
an accuracy of 86.28%, which is quite competitive to
current state-of-the-art methods. This shows that the proposed
PCANet is also effective in learning invariant features for face
images captured in less controlled conditions.

In preparation of this paper, we became aware of
two concurrent works [34], [35] that employ ConvNet for
LFW face verification. Although both works achieve very
impressive results on LFW, their experimental setting greatly
differs from ours. These two works require an outside database
to train the ConvNet, and the face images have to be more
precisely aligned; e.g., [34] uses a 3D model for face align-
ment, and [35] extracts multi-scale features based on detected
landmark positions. In contrast, we only trained the PCANet
using LFW-a [32], an aligned version of LFW images using
the commercial alignment system of face.com.

10The x-y coordinates (97, 111) and (156, 111) of the original images are
aligned to (10,60) and (70,60), respectively, of the template.

11For a fair comparison, we only report the results of single descriptors.
The best-known LFW result using the unsupervised setting is 88.57% [33],
which is inferred from four different descriptors.

IV. EXPERIMENTS: HAND-WRITTEN DIGITS, TEXTURE

AND OBJECT RECOGNITION

The proposed PCANet, RandNet and LDANet were exten-
sively tested on face databases in the last section. We now
turn our attention to their applications to hand-written digit
recognition, texture discrimination, and object recognition in
this section. Before proceeding further, we introduce the
databases and classifiers used in this section as follows.

Databases: The MNIST [4] dataset consists of 28×28 gray-
scale images of handwritten digits 0-9. MNIST variations [38]
introduce more controllable factors of variation, such as
rotations, background noise, and background images, to
MNIST. The CUReT texture dataset [39] contains 61 classes
of image textures with dimensions of 200×200. Each
texture class has images of the same material with different
poses, illumination conditions, specularities, shadowing and
surface normal variations. CIFAR10 [40] is a set of natural
RGB images of dimensions 32×32, and the images vary
significantly not only in object position and object scale
within each class but also in the colors and textures of these
objects. Table VIII summarizes the databases.

Classifiers: A linear SVM classifier [41] is employed
throughout this section. The NN and softmax classifiers are not
chosen because the high-dimensionality nature of the PCANet
features and thousands of training images make the entire
course of training much longer. However, their performances
may not be comparable to that of the linear SVM classifier;
see Section IV-A3 for details.

A. Digit Recognition on MNIST Datasets

The MNIST basic dataset is used to investigate the influence
of the number of filters and different block overlap
ratios on the proposed networks. We then compare the
proposed networks with state-of-the-art methods on all of
the MNIST datasets. A performance comparison among NN,
linear SVM and softmax classifiers is also performed.

1) Impact of the Number of Filters: We vary the number
of filters in the first stage L1 from 2 to 12 for the one-stage
networks. Regarding the two-stage networks, we set L2 = 8
and change L1 from 4 to 24. The filter size of the networks
is k1 = k2 = 7, the block size is 7×7, and the overlapping
region between blocks is half of the block size. Figure 8 shows

CHAN et al.: PCANet: A SIMPLE DEEP LEARNING BASELINE FOR IMAGE CLASSIFICATION 5027

Fig. 8. Error rate of PCANet on MNIST basic test set for varying number
of filters in the first stage. (a) PCANet-1; (b) PCANet-2 with L2 = 8.

TABLE IX

ERROR RATES (%) OF PCANet-2 ON THE basic DATASET FOR VARYING

BLOCK OVERLAP RATIOS (BORs)

the results. The results are consistent with those on the
MultiPIE face database shown in Figure 3; PCANet outper-
forms RandNet and LDANet for almost all cases.

2) Impact of the Block Overlap Ratio: The number of
filters is fixed to L1 = L2 = 8, the filter size is again
k1 = k2 = 7, and the block size is 7×7. We only alter
the block overlap ratio (BOR) from 0.1 to 0.7. Table IX lists
the results of RandNet-2, PCANet-2, and LDANet-2. Clearly,
PCANet-2 and LDANet-2 achieve their minimum error rates
for BOR equal to 0.5 and 0.6, respectively, and PCANet-2
performs the best under all conditions.

3) Comparison With State of the Art: We compare RandNet,
PCANet, and LDANet with ConvNet [5], 2-stage ScatNet
(ScatNet-2) [6], and other methods. In ScatNet, the number
of scales and the number of orientations are set to 3 and 8,
respectively. Regarding the parameters of PCANet, we set
the filter size k1 = k2 = 7 and the number of PCA filters
L1 = L2 = 8; the block size is tuned through cross-validation
for MNIST and the validation sets for MNIST variations.12

The overlapping region between blocks is half of the block
size. Unless otherwise specified, we use the linear SVM clas-
sifier for ScatNet, RandNet, PCANet and LDANet for the
9 classification tasks. Furthermore, the softmax classifier for
the PCANet is also tested because it has been widely used in
the final layer of DNN/ConvNet.

The testing error rates of the various methods on MNIST are
shown in Table X. For a fair comparison, we do not include
the results of methods using augmented training samples
with distortions or other information; for that, the best-known
result is 0.23% [42]. We note that RandNet-2, PCANet-2, and
LDANet-2 are comparable with the state-of-the-art methods
on this standard MNIST task. However, because MNIST has a
substantial amount of training data, all methods perform very
well and are very similar – the difference is not statistically
meaningful.

12Using either cross-validation or the validation set, the optimal block size is
obtained as 7×7 for MNIST, basic, and rec-img; 4×4 for rot, bg-img, bg-rnd,
and bg-img-rot; 14×14 for rec; and 28×28 for convex.

TABLE X

COMPARISON OF ERROR RATES (%) OF THE METHODS ON MNIST,

EXCLUDING METHODS THAT AUGMENT THE TRAINING DATA.

THE FILTER SIZE k1 = k2 = 7 AND THE NUMBER OF FILTERS

L1 = L2 = 8 ARE SET, AND THE LINEAR SVM IS USED

IN RandNet, PCANet, AND LDANet UNLESS

OTHERWISE SPECIFIED. HERE, L ′
1 = L1 L2

AND k′
i = 2ki − 1, i = 1, 2

Fig. 9. The PCANet filters learned on the MNIST dataset. Top row: the first
stage. Bottom row: the second stage.

Accordingly, we also report the results of different
methods on MNIST variations in Table XI. To the best of
our knowledge, PCANet-2 achieves state-of-the-art results
for four out of the eight remaining tasks: basic, bg-img,
bg-img-rot, and convex. In particular, for bg-img, the error
rate decreases from 12.25 [43] to 10.95%.

Table X and Table XI also show the results obtained using
PCANet-1 with L ′

1 = L1 L2 filters of size k ′
1 × k ′

2 for
k ′

i = 2ki −1, i = 1, 2. PCANet-1 with such a parameter setting
is used to mimic the reported PCANet-2 in a single-stage
structure. PCANet-2 continues to outperform this PCANet-1
alternative in most cases, repeatedly confirming the merits
of a deeper network. In addition, one can also observe the
performance of PCANet-2 with the NN and softmax classifiers
in the last two rows, respectively. Both the NN and softmax
classifiers do not provide a performance that is superior to the
linear SVM classifier in most cases.

In addition, we present the learned PCANet filters
in Figure 9 and Figure 10. An intriguing pattern is observed
in the filters of the rect and rect-img datasets. For rect, we can
see both horizontal and vertical stripes because these patterns
attempt to capture the edges of the rectangles. When there is
an image background in rect-img, several filters become
low-pass to secure the responses from background
images.

5028 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

TABLE XI

COMPARISON OF TESTING ERROR RATES (%) FOR THE VARIOUS METHODS ON MNIST VARIATIONS. THE FILTER SIZE k1 = k2 = 7 AND THE

NUMBER OF FILTERS L1 = L2 = 8 ARE SET, AND THE LINEAR SVM IS USED IN RandNet, PCANet, AND LDANet UNLESS

OTHERWISE SPECIFIED. HERE, L ′
1 = L1 L2 AND k′

i = 2ki − 1, i = 1, 2

Fig. 10. The PCANet filters learned on various MNIST datasets. For each dataset, the top row shows the filters of the first stage; the bottom row shows the
filters of the second stage.

Fig. 11. The PCANet filters learned on the CUReT database. Top row: the
first stage. Bottom row: the second stage.

B. Texture Classification on CUReT Dataset

In this experiment, a subset of the dataset with azimuthal
viewing angle of less than 60 degrees is selected, therein
yielding 92 images in each class. A central 200 × 200 region
is cropped from each of the selected images. The dataset is
randomly split into a training and testing set, with 46 training
images for each class, as in [39]. The PCANet is trained with
filter size k1 = k2 = 5, number of filters L1 = L2 = 8,
and block size 50×50. We use the linear SVM classifier. The
testing error rates averaged over 10 random splits are shown

in Table XII. We see that PCANet-1 outperforms ScatNet-1,
but the improvement from PCANet-1 to PCANet-2 is not as
large as that of ScatNet. Note that ScatNet-2 followed by a
PCA-based classifier provides the best result [6].

C. Object Recognition on CIFAR10

Finally, we evaluate the performance of the PCANet on the
CIFAR10 database for object recognition. The motivation here
is to explore the limitation of such a simple PCANet on a
relatively complex database compared to the databases com-
posed of faces, digits, and textures that we have experimented
with, which could somehow be roughly aligned or prepared.
First, we extend PCA filter learning so as to accommodate
the RGB images in object databases. In the same spirit of
constructing the data matrix X in (1), we gather the same
individual matrix for RGB channels of the images, denoted
by Xr, Xg, Xb ∈ R

k1k2×Nm̃ñ . Following the key steps

CHAN et al.: PCANet: A SIMPLE DEEP LEARNING BASELINE FOR IMAGE CLASSIFICATION 5029

TABLE XII

COMPARISON OF ERROR RATES (%) ON CUReT

Fig. 12. The PCANet filters learned on the Cifar10 database. Top: the first
stage. Bottom: the second stage.

in Section II-A1, the multichannel PCA filters can be easily
verified as

W r,g,b
l

.= matk1,k2,3(ql(X̃ X̃T)) ∈ R
k1×k2×3, (14)

where X̃ = [XT
r , XT

g , XT
b]T and matk1,k2,3(v) is a function

that maps v ∈ R
3k1k2 to a tensor W ∈ R

k1×k2×3. An example
of the learned multichannel PCA filters is demonstrated in
Figure 12. In addition to the modification above, we also
connect spatial pyramid pooling (SPP) [53]–[56] to the output
layer of PCANet, with the objective of extracting information
invariant to large poses and complex backgrounds, usually
seen in object databases. Another advantage of equipping SPP
with the PCANet is that it can generate a fixed-length repre-
sentation regardless of image size/scale. This strategy has been
explored in [55] and [56], where the SPP-net clearly increases
the accuracy of various no-SPP counterparts. We also observe
that the PCANet with SPP essentially improves the accuracy of
object recognition on CIFAR10! However, no such significant
improvement was found in the previous experiments on images
of faces, digits and textures.

We use the linear SVM classifier in the experiments. In the
first experiment, we train the PCANet on CIFAR10 with a filter
size k1 = k2 = 5, number of filters L1 = 40, L2 = 8, and
block size equal to 8 × 8. In addition, we set the overlapping
region between blocks to half of the block size and connected
SPP to the output layer of the PCANet, i.e., the maximum
response in each bin of the block histograms is pooled in

TABLE XIII

COMPARISON OF ACCURACY (%) OF THE METHODS ON THE

CIFAR10 DATASET WITH NO DATA AUGMENTATION

a pyramid of 4×4, 2×2, and 1×1 subregions. This yields
the 21 pooled histogram features of dimension L12L2 . The
dimension of each pooled feature is reduced to 1280 by PCA.

In the second experiment, we concatenate PCANet features
learned with different filter sizes of k1 = k2 = 3 and k1 =
k2 = 5. All of the processes and model parameters are fixed
to be identical to the single descriptor mentioned in the last
paragraph, except L1 = 12 and L1 = 28 are set to make the
filter size equal to 3 and 5, respectively. This is performed to
ensure that the combined features are of the same dimension
as the single descriptor for fairness.

The results are shown in Table XIII. PCANet-2 achieves an
accuracy of 77.14% and obtains a 1.5% improvement when
combining two features learned with different filter sizes
(marked with “combined” in parenthesis). Although PCANet-2
experiences an approximately 11% accuracy degradation in
comparison to the state-of-the-art method (with no data
augmentation), the performance of the fully unsupervised and
extremely simple PCANet-2 shown here remains encouraging.

V. CONCLUSION

In this paper, we proposed arguably the simplest unsuper-
vised convolutional deep learning network— PCANet. The
network processes input images using cascaded PCA, binary
hashing, and block histograms. Like most ConvNet models,
the network parameters, such as the number of layers, the
filter size, and the number of filters, must be given to the
PCANet. Once the parameters are fixed, training the PCANet
is extremely simple and efficient because the filter learning
in the PCANet does not involve regularized parameters or
require numerical optimization solvers. Moreover, building the
PCANet consists of only a cascaded linear map followed by a
nonlinear output stage. Such simplicity offers an alternative
yet refreshing perspective on convolutional deep learning
networks and could further facilitate mathematical analysis and
justification of their effectiveness.

Two simple extensions of PCANet, i.e., RandNet and
LDANet, have been introduced and tested together with
PCANet on many image classification tasks, including faces,
hand-written digits, textures, and objects. The extensive exper-
imental results have consistently shown that the PCANet
outperforms RandNet and LDANet and that it is generally
on par with ScatNet and variations of ConvNet. Furthermore,
the performance of the PCANet is very similar and often

5030 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

better than highly engineered hand-crafted features (such as
LBP and LQP). In tasks such as face recognition, the PCANet
also demonstrates remarkable robustness to corruption and the
ability to transfer to new datasets.

The experiments also demonstrate that as long as the images
in the databases are somehow well prepared, i.e., the images
are roughly aligned and do not exhibit diverse scales or poses,
the PCANet is able to eliminate the image variability and pro-
vides reasonably competitive accuracy. In challenging image
databases such as PASCAL VOC [64] and ImageNet [65],
the PCANet might not be sufficient to address the variability
given its extremely simple structure and unsupervised learn-
ing method. An intriguing research direction will then be
how to construct a more complicated (e.g., more sophisti-
cated filters possibly with discriminative learning) or deeper
(greater number of stages) PCANet that could address the
aforementioned issues. Some preprocessing of pose alignment
and scale normalization might be essential to guaranteeing
good performance. The current bottleneck that keeps PCANet
from becoming deeper (e.g., to more than two stages) is
that the dimension of the resulting feature would increase
exponentially with the number of stages. This fortunately
seems able to be fixed by replacing the 2D convolution filters
with tensor-like filters, as in (14); this will be the topic
of future study. Furthermore, we will also leave as future
work augmenting PCANet with a simple, scalable baseline
classifier, readily applicable to much larger scale datasets and
problems.

Regardless, the extensive experiments given in this paper
sufficiently demonstrate two facts: 1) the PCANet is a very
simple deep learning network that effectively extracts useful
information for the classification of faces, digits, and texture
images, and 2) the PCANet can be a valuable baseline for
studying advanced deep learning architectures for large-scale
image classification tasks.

REFERENCES

[1] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[2] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[3] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and
Y. Bengio, “Maxout networks,” in Proc. 30th ICML, 2013,
pp. 1–9.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[5] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?” in Proc. IEEE 12th
ICCV, Sep./Oct. 2009, pp. 2146–2153.

[6] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
Aug. 2013.

[7] H. Lee, R. Grosse, R. Rananth, and A. Y. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representa-
tions,” in Proc. 26th Annu. ICML, 2009, pp. 609–616.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural network,” in Proc. NIPS, 2012,
pp. 1097–1105.

[9] K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu,
and Y. LeCun, “Learning convolutional feature hierarchies for visual
recognition,” in Proc. NIPS, 2010, pp. 1090–1098.

[10] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant
scattering for texture discrimination,” in Proc. IEEE Conf. CVPR,
Jun. 2013, pp. 1233–1240.

[11] C. J. C. Burges, J. C. Platt, and S. Jana, “Distortion discriminant analysis
for audio fingerprinting,” IEEE Trans. Speech Audio Process., vol. 11,
no. 3, pp. 165–174, May 2003.

[12] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Comput. Soc. Conf. CVPR, Jun. 2005,
pp. 886–893.

[14] L. Fei-Fei and P. Perona, “A Bayesian hierarchical model for learning
natural scene categories,” in Proc. IEEE Comput. Soc. Conf. CVPR,
Jun. 2005, pp. 524–531.

[15] C. Liu and H. Wechsler, “Gabor feature based classification using the
enhanced Fisher linear discriminant model for face recognition,” IEEE
Trans. Image Process., vol. 11, no. 4, pp. 467–476, Apr. 2002.

[16] H. Yu and J. Yang, “A direct LDA algorithm for high-dimensional data—
With application to face recognition,” Pattern Recognit., vol. 34, no. 10,
pp. 2067–2069, 2001.

[17] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-PIE,”
in Proc. 8th IEEE Conf. Autom. Face Gesture Recognit., Sep. 2008,
pp. 1–8.

[18] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 6, pp. 643–660, Jun. 2001.

[19] A. Martínez and R. Benavente, “The AR face database,” CVC,
Barcelona, Spain, Tech. Rep. #24, 1998.

[20] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The FERET
database and evaluation procedure for face-recognition algorithms,”
Image Vis. Comput., vol. 16, no. 5, pp. 295–306, 1998.

[21] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” Univ. Massachusetts, Amherst, Amherst, MA,
USA, Tech. Rep. 07-49, 2007.

[22] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local
binary patterns: Application to face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041, Dec. 2006.

[23] Y. Jia. (2013). Caffe: An Open Source Convolutional Archi-
tecture for Fast Feature Embedding. [Online]. Available: http://
caffe.berkeleyvision.org/

[24] X. Tan and B. Triggs, “Enhanced local texture feature sets for face
recognition under difficult lighting conditions,” IEEE Trans. Image
Process., vol. 19, no. 6, pp. 1635–1650, Jun. 2010.

[25] W. Deng, J. Hu, and J. Guo, “Extended SRC: Undersampled face
recognition via intraclass variant dictionary,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 9, pp. 1864–1870, Sep. 2012.

[26] J. Lu, Y.-P. Tan, and G. Wang, “Discriminative multimanifold analysis
for face recognition from a single training sample per person,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 39–51, Jan. 2013.

[27] N.-S. Vu and A. Caplier, “Enhanced patterns of oriented edge mag-
nitudes for face recognition and image matching,” IEEE Trans. Image
Process., vol. 21, no. 3, pp. 1352–1368, Mar. 2012.

[28] S. U. Hussain, T. Napoléon, and F. Jurie, “Face recognition using local
quantized patterns,” in Proc. BMVC, 2012, p. 11.

[29] S. Xie, S. Shan, X. Chen, and J. Chen, “Fusing local patterns of Gabor
magnitude and phase for face recognition,” IEEE Trans. Image Process.,
vol. 19, no. 5, pp. 1349–1361, May 2010.

[30] N.-S. Vu, “Exploring patterns of gradient orientations and magnitudes
for face recognition,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 2,
pp. 295–304, Feb. 2013.

[31] Z. Chai, Z. Sun, H. Méndez-Vázquez, R. He, and T. Tan, “Gabor ordinal
measures for face recognition,” IEEE Trans. Inf. Forensics Security,
vol. 9, no. 1, pp. 14–26, Jan. 2014.

[32] L. Wolf, T. Hassner, and Y. Taigman, “Effective unconstrained face
recognition by combining multiple descriptors and learned background
statistics,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 10,
pp. 1978–1990, Oct. 2011.

[33] O. Barkan, J. Weill, L. Wolf, and H. Aronowitz, “Fast high dimensional
vector multiplication face recognition,” in Proc. IEEE ICCV, Dec. 2013,
pp. 1960–1967.

[34] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, “DeepFace: Closing
the gap to human-level performance in face verification,” in Proc. IEEE
Conf. CVPR, Jun. 2014, pp. 1701–1708.

[35] H. Fan, Z. Cao, Y. Jiang, and Q. Yin. (2014). “Learning deep face
representation.” [Online]. Available: http://arxiv.org/abs/1403.2802

CHAN et al.: PCANet: A SIMPLE DEEP LEARNING BASELINE FOR IMAGE CLASSIFICATION 5031

[36] D. Chen, X. Cao, F. Wen, and J. Sun, “Blessing of dimensionality: High-
dimensional feature and its efficient compression for face verification,”
in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 3025–3032.

[37] Z. Cui, W. Li, D. Xu, S. Shan, and X. Chen, “Fusing robust face region
descriptors via multiple metric learning for face recognition in the wild,”
in Proc. IEEE CVPR, Jun. 2013, pp. 3554–3561.

[38] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with many
factors of variation,” in Proc. 24th ICML, 2007, pp. 473–480.

[39] M. Varma and A. Zisserman, “A statistical approach to material classifi-
cation using image patch exemplars,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 11, pp. 2032–2047, Nov. 2009.

[40] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[41] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871–1874, Jul. 2008.

[42] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep
neural networks for image classification,” in Proc. IEEE Conf. CVPR,
Jun. 2012, pp. 3642–3649.

[43] K. Sohn, G. Zhou, C. Lee, and H. Lee, “Learning and selecting features
jointly with point-wise gated Boltzmann machines,” in Proc. 30th ICML,
2013, pp. 217–225.

[44] K. Yu, Y. Lin, and J. Lafferty, “Learning image representations from the
pixel level via hierarchical sparse coding,” in Proc. IEEE Conf. CVPR,
Jun. 2011, pp. 1713–1720.

[45] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 24, no. 4, pp. 509–522, Apr. 2002.

[46] D. Keysers, T. Deselaers, C. Gollan, and H. Ney, “Deformation models
for image recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29,
no. 8, pp. 1422–1435, Aug. 2007.

[47] M. D. Zeiler and R. Fergus, “Stochastic pooling for regularization of
deep convolutional neural networks,” in Proc. ICLR, 2013.

[48] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive
auto-encoders: Explicit invariance during feature extraction,” in Proc.
28th ICML, 2011, pp. 1–8.

[49] K. Sohn and H. Lee, “Learning invariant representations with local
transformations,” in Proc. 29th ICML, 2012, pp. 1311–1318.

[50] E. Hayman, B. Caputo, M. Fritz, and J.-O. Eklundh, “On the significance
of real-world conditions for material classification,” in Proc. 8th ECCV,
2004, pp. 253–266.

[51] M. Crosier and L. D. Griffin, “Using basic image features for texture
classification,” Int. J. Comput. Vis., vol. 88, no. 3, pp. 447–460, 2010.

[52] R. E. Broadhurst, “Statistical estimation of histogram variation for
texture classification,” in Proc. Workshop Texture Anal. Synth., 2006,
pp. 1–6.

[53] K. Grauman and T. Darrell, “The pyramid match kernel: Discriminative
classification with sets of image features,” in Proc. 10th IEEE ICCV,
Oct. 2005, pp. 1458–1465.

[54] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.
IEEE Comput. Soc. Conf. CVPR, Jun. 2006, pp. 2169–2178.

[55] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” in Proc. 13th ECCV,
2014, pp. 346–361.

[56] K. He, X. Zhang, S. Ren, and J. Sun. (2015). “Spatial pyramid pooling in
deep convolutional networks for visual recognition.” [Online]. Available:
http://arxiv.org/abs/1406.4729

[57] Q. V. Le, J. Ngiam, Z. Chen, D. Chia, P. W. Koh, and A. Y. Ng, “Tiled
convolutional neural networks,” in Proc. NIPS, 2010, pp. 1279–1287.

[58] K. Yu and T. Zhang, “Improved local coordinate coding using local
tangents,” in Proc. 27th ICML, 2010, pp. 1215–1222.

[59] L. Bo, X. Ren, and D. Fox, “Kernel descriptors for visual recognition,”
in Proc. NIPS, 2010, pp. 244–252.

[60] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks
in unsupervised feature learning,” in Proc. 14th Int. Conf. Artif. Intell.
Statist., 2001, pp. 215–223.

[61] A. Krizhevsky. (Jul. 18, 2014). Cuda-Convnet. [Online]. Available:
http://code.google.com/p/cuda-convnet/

[62] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
optimization of machine learning algorithms,” in Proc. NIPS, 2012,
pp. 2951–2959.

[63] M. Lin, Q. Chen, and S. Yan. (2014). “Network in network.” [Online].
Available: http://arxiv.org/abs/1312.4400

[64] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal visual object classes (VOC) challenge,” Int.
J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.

[65] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” 2014.

Tsung-Han Chan (S’08–M’09) received the
B.S. degree from the Department of Electrical Engi-
neering, Yuan Ze University, Taiwan, in 2004, and
the Ph.D. degree from the Institute of Communica-
tions Engineering, National Tsing Hua University,
Taiwan, in 2009. He is currently a Senior Engineer
with MediaTek Inc., Hsinchu, Taiwan. He was a
co-recipient of the WHISPERS 2011 Best Paper
Award. He was also recognized as an Outstanding
Reviewer for CVPR 2014, and a Best Reviewer of
the IEEE TRANSACTIONS ON GEOSCIENCE AND

REMOTE SENSING 2014. His research interests are in image processing and
numerical optimization, with a recent emphasis on computer vision, machine
learning, and hyperspectral remote sensing.

Kui Jia received the B.Eng. degree in marine engi-
neering from Northwestern Polytechnic University,
China, in 2001, the M.Eng. degree in electrical and
computer engineering from the National University
of Singapore in 2003, and the Ph.D. degree in
computer science from the Queen Mary University
of London, London, U.K., in 2007. He is currently
a Visiting Assistant Professor with the University
of Macau, Macau, China. His research interests are
in computer vision, machine learning, and image
processing.

Shenghua Gao received the B.E. degree from
the University of Science and Technology of
China, in 2008 (outstanding graduates), and the
Ph.D. degree from Nanyang Technological Univer-
sity, in 2012. From 2012 to 2014, he was a Research
Scientist with the Advanced Digital Sciences Center,
Singapore. In 2015, he visited UC Berkeley as a
Visiting Scholar. He is currently an Assistant Pro-
fessor with ShanghaiTech University, China. He has
authored more than 20 papers in object and face
recognition related topics in many international con-

ferences and journals, including the IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, the International Journal of
Computer Vision, the IEEE TRANSACTIONS ON IMAGE PROCESSING, the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,
the IEEE TRANSACTIONS ON MULTIMEDIA, the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, the Conference on
Computer Vision and Pattern Recognition, and the European Conference
on Computer Vision. His research interests include computer vision and
machine learning. He received the Microsoft Research Fellowship in 2010,
and the ACM Shanghai Young Research Scientist Award in 2015.

Jiwen Lu (M’11–SM’15) received the
B.Eng. degree in mechanical engineering and
the M.Eng. degree in electrical engineering from
the Xi’an University of Technology, Xi’an, China,
and the Ph.D. degree in electrical engineering from
Nanyang Technological University, Singapore.

He is currently a Faculty Member with the
Department of Automation, Tsinghua University,
China. His current research interests include
computer vision, pattern recognition, and machine
learning. He has authored or co-authored over

110 scientific papers in these areas, in which more than 40 papers are
published in the IEEE TRANSACTIONS journals and top-tier computer vision
conferences. He serves as an Associate Editor of Pattern Recognition Letters,
Neurocomputing, and the IEEE BIOMETRICS COUNCIL NEWSLETTERS.

Dr. Lu was a recipient of the First-Prize National Scholarship and the
National Outstanding Student Award from the Ministry of Education of
China in 2002 and 2003, the Best Student Paper Award from Pattern
Recognition and Machine Intelligence Association of Singapore in 2012,
the Top 10% Best Paper Award from the IEEE International Workshop on
Multimedia Signal Processing in 2014, and the National 1000 Young Talents
Plan Program in 2015.

5032 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

Zinan Zeng received the B.E. (Hons.) and
master’s degrees from the School of Computer
Engineering, Nanyang Technological University,
Singapore. He joined the Advanced Digital Sciences
Center, Singapore, as a Senior Software Engineer.
His research interests include statistical learning and
optimization with application to computer vision and
image processing.

Yi Ma (F’13) received the bachelor’s degrees in
automation and applied mathematics from Tsinghua
University, Beijing, in 1995, and the M.S. degree
in electrical engineering and computer science, the
M.A. degree in mathematics, and the Ph.D. degree
in electrical engineering and computer science from
the University of California, Berkeley, in 1997, 2000,
and 2000, in 1997, 2000, and 2000. From
2000 to 2011, he was an Associate Professor of
the Electrical and Computer Engineering Depart-
ment, University of Illinois at Urbana–Champaign.

From 2009 to 2014, he was a Principal Researcher and the Group Manager of
the Visual Computing Group with Microsoft Research Asia. He is currently a
Professor and the Executive Dean of the School of Information Science and
Technology with ShanghaiTech University, China. His main research interests
include computer vision and data science, and has written two textbooks
entitled An Invitation to 3-D Vision (Springer) and Generalized Principal
Component Analysis (Springer). He has served as an Associate Editor of
the International Journal on Computer Vision, the IEEE TRANSACTIONS ON

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, the IEEE TRANSAC-
TIONS ON INFORMATION THEORY, the IEEE Signal Processing Magazine,
the SIAM Journal on Imaging Sciences, and the IMA Journal on Information
and Inference. He was a recipient of the David Marr Best Paper Prize at
the International Conference on Computer Vision in 1999 and the Honorable
Mention for the Longuet-Higgins Best Paper Award at the European Confer-
ence on Computer Vision in 2004. He received the CAREER Award from
the U.S. National Science Foundation in 2004 and the Young Investigator
Program Award from the U.S. Office of Naval Research in 2005. He has
served as the Area Chair of NIPS, CVPR, and ICCV, the Program Chair of
ICCV 2013, and the General Chair of ICCV 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

